EM.java
9.83 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import java.lang.String;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;
// C++: class EM
//javadoc: EM
public class EM extends StatModel {
protected EM(long addr) { super(addr); }
public static final int
COV_MAT_SPHERICAL = 0,
COV_MAT_DIAGONAL = 1,
COV_MAT_GENERIC = 2,
COV_MAT_DEFAULT = COV_MAT_DIAGONAL,
DEFAULT_NCLUSTERS = 5,
DEFAULT_MAX_ITERS = 100,
START_E_STEP = 1,
START_M_STEP = 2,
START_AUTO_STEP = 0;
//
// C++: Mat getMeans()
//
//javadoc: EM::getMeans()
public Mat getMeans()
{
Mat retVal = new Mat(getMeans_0(nativeObj));
return retVal;
}
//
// C++: Mat getWeights()
//
//javadoc: EM::getWeights()
public Mat getWeights()
{
Mat retVal = new Mat(getWeights_0(nativeObj));
return retVal;
}
//
// C++: static Ptr_EM create()
//
//javadoc: EM::create()
public static EM create()
{
EM retVal = new EM(create_0());
return retVal;
}
//
// C++: static Ptr_EM load(String filepath, String nodeName = String())
//
//javadoc: EM::load(filepath, nodeName)
public static EM load(String filepath, String nodeName)
{
EM retVal = new EM(load_0(filepath, nodeName));
return retVal;
}
//javadoc: EM::load(filepath)
public static EM load(String filepath)
{
EM retVal = new EM(load_1(filepath));
return retVal;
}
//
// C++: TermCriteria getTermCriteria()
//
//javadoc: EM::getTermCriteria()
public TermCriteria getTermCriteria()
{
TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
return retVal;
}
//
// C++: Vec2d predict2(Mat sample, Mat& probs)
//
//javadoc: EM::predict2(sample, probs)
public double[] predict2(Mat sample, Mat probs)
{
double[] retVal = predict2_0(nativeObj, sample.nativeObj, probs.nativeObj);
return retVal;
}
//
// C++: bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs)
public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)
{
boolean retVal = trainE_0(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
}
//javadoc: EM::trainE(samples, means0)
public boolean trainE(Mat samples, Mat means0)
{
boolean retVal = trainE_1(nativeObj, samples.nativeObj, means0.nativeObj);
return retVal;
}
//
// C++: bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainEM(samples, logLikelihoods, labels, probs)
public boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs)
{
boolean retVal = trainEM_0(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
}
//javadoc: EM::trainEM(samples)
public boolean trainEM(Mat samples)
{
boolean retVal = trainEM_1(nativeObj, samples.nativeObj);
return retVal;
}
//
// C++: bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs)
public boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs)
{
boolean retVal = trainM_0(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
}
//javadoc: EM::trainM(samples, probs0)
public boolean trainM(Mat samples, Mat probs0)
{
boolean retVal = trainM_1(nativeObj, samples.nativeObj, probs0.nativeObj);
return retVal;
}
//
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
//
//javadoc: EM::predict(samples, results, flags)
public float predict(Mat samples, Mat results, int flags)
{
float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags);
return retVal;
}
//javadoc: EM::predict(samples)
public float predict(Mat samples)
{
float retVal = predict_1(nativeObj, samples.nativeObj);
return retVal;
}
//
// C++: int getClustersNumber()
//
//javadoc: EM::getClustersNumber()
public int getClustersNumber()
{
int retVal = getClustersNumber_0(nativeObj);
return retVal;
}
//
// C++: int getCovarianceMatrixType()
//
//javadoc: EM::getCovarianceMatrixType()
public int getCovarianceMatrixType()
{
int retVal = getCovarianceMatrixType_0(nativeObj);
return retVal;
}
//
// C++: void getCovs(vector_Mat& covs)
//
//javadoc: EM::getCovs(covs)
public void getCovs(List<Mat> covs)
{
Mat covs_mat = new Mat();
getCovs_0(nativeObj, covs_mat.nativeObj);
Converters.Mat_to_vector_Mat(covs_mat, covs);
covs_mat.release();
return;
}
//
// C++: void setClustersNumber(int val)
//
//javadoc: EM::setClustersNumber(val)
public void setClustersNumber(int val)
{
setClustersNumber_0(nativeObj, val);
return;
}
//
// C++: void setCovarianceMatrixType(int val)
//
//javadoc: EM::setCovarianceMatrixType(val)
public void setCovarianceMatrixType(int val)
{
setCovarianceMatrixType_0(nativeObj, val);
return;
}
//
// C++: void setTermCriteria(TermCriteria val)
//
//javadoc: EM::setTermCriteria(val)
public void setTermCriteria(TermCriteria val)
{
setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
return;
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: Mat getMeans()
private static native long getMeans_0(long nativeObj);
// C++: Mat getWeights()
private static native long getWeights_0(long nativeObj);
// C++: static Ptr_EM create()
private static native long create_0();
// C++: static Ptr_EM load(String filepath, String nodeName = String())
private static native long load_0(String filepath, String nodeName);
private static native long load_1(String filepath);
// C++: TermCriteria getTermCriteria()
private static native double[] getTermCriteria_0(long nativeObj);
// C++: Vec2d predict2(Mat sample, Mat& probs)
private static native double[] predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj);
// C++: bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
private static native boolean trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
private static native boolean trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj);
// C++: bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
private static native boolean trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
private static native boolean trainEM_1(long nativeObj, long samples_nativeObj);
// C++: bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
private static native boolean trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
private static native boolean trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj);
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags);
private static native float predict_1(long nativeObj, long samples_nativeObj);
// C++: int getClustersNumber()
private static native int getClustersNumber_0(long nativeObj);
// C++: int getCovarianceMatrixType()
private static native int getCovarianceMatrixType_0(long nativeObj);
// C++: void getCovs(vector_Mat& covs)
private static native void getCovs_0(long nativeObj, long covs_mat_nativeObj);
// C++: void setClustersNumber(int val)
private static native void setClustersNumber_0(long nativeObj, int val);
// C++: void setCovarianceMatrixType(int val)
private static native void setCovarianceMatrixType_0(long nativeObj, int val);
// C++: void setTermCriteria(TermCriteria val)
private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
// native support for java finalize()
private static native void delete(long nativeObj);
}