LogisticRegression.java
7.43 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import java.lang.String;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
// C++: class LogisticRegression
//javadoc: LogisticRegression
public class LogisticRegression extends StatModel {
protected LogisticRegression(long addr) { super(addr); }
public static final int
REG_DISABLE = -1,
REG_L1 = 0,
REG_L2 = 1,
BATCH = 0,
MINI_BATCH = 1;
//
// C++: Mat get_learnt_thetas()
//
//javadoc: LogisticRegression::get_learnt_thetas()
public Mat get_learnt_thetas()
{
Mat retVal = new Mat(get_learnt_thetas_0(nativeObj));
return retVal;
}
//
// C++: static Ptr_LogisticRegression create()
//
//javadoc: LogisticRegression::create()
public static LogisticRegression create()
{
LogisticRegression retVal = new LogisticRegression(create_0());
return retVal;
}
//
// C++: static Ptr_LogisticRegression load(String filepath, String nodeName = String())
//
//javadoc: LogisticRegression::load(filepath, nodeName)
public static LogisticRegression load(String filepath, String nodeName)
{
LogisticRegression retVal = new LogisticRegression(load_0(filepath, nodeName));
return retVal;
}
//javadoc: LogisticRegression::load(filepath)
public static LogisticRegression load(String filepath)
{
LogisticRegression retVal = new LogisticRegression(load_1(filepath));
return retVal;
}
//
// C++: TermCriteria getTermCriteria()
//
//javadoc: LogisticRegression::getTermCriteria()
public TermCriteria getTermCriteria()
{
TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
return retVal;
}
//
// C++: double getLearningRate()
//
//javadoc: LogisticRegression::getLearningRate()
public double getLearningRate()
{
double retVal = getLearningRate_0(nativeObj);
return retVal;
}
//
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
//
//javadoc: LogisticRegression::predict(samples, results, flags)
public float predict(Mat samples, Mat results, int flags)
{
float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags);
return retVal;
}
//javadoc: LogisticRegression::predict(samples)
public float predict(Mat samples)
{
float retVal = predict_1(nativeObj, samples.nativeObj);
return retVal;
}
//
// C++: int getIterations()
//
//javadoc: LogisticRegression::getIterations()
public int getIterations()
{
int retVal = getIterations_0(nativeObj);
return retVal;
}
//
// C++: int getMiniBatchSize()
//
//javadoc: LogisticRegression::getMiniBatchSize()
public int getMiniBatchSize()
{
int retVal = getMiniBatchSize_0(nativeObj);
return retVal;
}
//
// C++: int getRegularization()
//
//javadoc: LogisticRegression::getRegularization()
public int getRegularization()
{
int retVal = getRegularization_0(nativeObj);
return retVal;
}
//
// C++: int getTrainMethod()
//
//javadoc: LogisticRegression::getTrainMethod()
public int getTrainMethod()
{
int retVal = getTrainMethod_0(nativeObj);
return retVal;
}
//
// C++: void setIterations(int val)
//
//javadoc: LogisticRegression::setIterations(val)
public void setIterations(int val)
{
setIterations_0(nativeObj, val);
return;
}
//
// C++: void setLearningRate(double val)
//
//javadoc: LogisticRegression::setLearningRate(val)
public void setLearningRate(double val)
{
setLearningRate_0(nativeObj, val);
return;
}
//
// C++: void setMiniBatchSize(int val)
//
//javadoc: LogisticRegression::setMiniBatchSize(val)
public void setMiniBatchSize(int val)
{
setMiniBatchSize_0(nativeObj, val);
return;
}
//
// C++: void setRegularization(int val)
//
//javadoc: LogisticRegression::setRegularization(val)
public void setRegularization(int val)
{
setRegularization_0(nativeObj, val);
return;
}
//
// C++: void setTermCriteria(TermCriteria val)
//
//javadoc: LogisticRegression::setTermCriteria(val)
public void setTermCriteria(TermCriteria val)
{
setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
return;
}
//
// C++: void setTrainMethod(int val)
//
//javadoc: LogisticRegression::setTrainMethod(val)
public void setTrainMethod(int val)
{
setTrainMethod_0(nativeObj, val);
return;
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: Mat get_learnt_thetas()
private static native long get_learnt_thetas_0(long nativeObj);
// C++: static Ptr_LogisticRegression create()
private static native long create_0();
// C++: static Ptr_LogisticRegression load(String filepath, String nodeName = String())
private static native long load_0(String filepath, String nodeName);
private static native long load_1(String filepath);
// C++: TermCriteria getTermCriteria()
private static native double[] getTermCriteria_0(long nativeObj);
// C++: double getLearningRate()
private static native double getLearningRate_0(long nativeObj);
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags);
private static native float predict_1(long nativeObj, long samples_nativeObj);
// C++: int getIterations()
private static native int getIterations_0(long nativeObj);
// C++: int getMiniBatchSize()
private static native int getMiniBatchSize_0(long nativeObj);
// C++: int getRegularization()
private static native int getRegularization_0(long nativeObj);
// C++: int getTrainMethod()
private static native int getTrainMethod_0(long nativeObj);
// C++: void setIterations(int val)
private static native void setIterations_0(long nativeObj, int val);
// C++: void setLearningRate(double val)
private static native void setLearningRate_0(long nativeObj, double val);
// C++: void setMiniBatchSize(int val)
private static native void setMiniBatchSize_0(long nativeObj, int val);
// C++: void setRegularization(int val)
private static native void setRegularization_0(long nativeObj, int val);
// C++: void setTermCriteria(TermCriteria val)
private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
// C++: void setTrainMethod(int val)
private static native void setTrainMethod_0(long nativeObj, int val);
// native support for java finalize()
private static native void delete(long nativeObj);
}